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A b s t r a c t

M1 muscarinic receptor plays a fundamental role in memory and is closely associated with Alzheimer’s disease (AD); it has 
long been assumed as a therapeutic goal. By activating of the cholinergic receptor vitamin E helps with memory retention. 
But effects of vitamin E on density of M1 muscarinic receptor-immunoreactive (ir) neurons remain poorly understood.  
The present research aimed to examine the chronic administration effect of vitamin E against scopolamine-induced mem-
ory loss and the number of M1 muscarinic receptor-ir neurons of the hippocampus in male rats. 
Randomly, 42 adult male Wistar rats were divided to six groups: control, Sham-saline: receiving scopolamine + saline, 
Sham-sesame oil: receiving scopolamine + sesame oil and three experimental groups: receiving scopolamine + vitamin E 
with different doses (25, 50, and 100 mg/kg/day, i.p.) for 14 days. The passive avoidance task was used for the memory 
test. Twenty-four hours after behavioral tests, rats’ brains were taken and fixed, and after tissue processing, sections were 
stained using the immunohistochemical technique for M1 muscarinic receptor-ir neurons and cresyl violet for neurons. 
The injection of scopolamine to rats caused memory impairment and vitamin E treatment could ameliorate it. In the sco-
polamine-treated groups, the number of CA1 and CA3 pyramidal and dentate gyrus (DG) granular neurons was decreased 
significantly as compared to the control group. Vitamin E treatment significantly increased neuron numbers in the CA1 
and CA3 areas of the hippocampus and DG area. Treatment with vitamin E for 14 days could compensate the loss of M1 
muscarinic receptor-immunoreactive neuron numbers induced by scopolamine in the hippocampus. The most effective 
vitamin E dose was 50 mg/kg/day in this study. 
In conclusion, vitamin E can compensate the neuronal loss in the hippocampal formation and also it can raise the density 
of M1 receptor-ir muscarinic neurons after an injection of scopolamine.
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Introduction

One kind of G-protein coupled receptors is mus-
carinic acetylcholine receptors [16,68,95]. So far, 
five muscarinic acetylcholine receptor subtypes 
(M1-M5) have been known [13,14,27] and among 
them, the M1 subtype makes up more than a half 
of the total and mainly exists in all major zones of 
the forebrain, such as the cortex, the hippocampal 
formation, corpus striatum of basal nuclei, and thal-
amus [30,36,65]. Indeed, M1 muscarinic receptors 
are highly concentrated in the brain areas related 
to Alzheimer’s disease (AD) but less in the periph-
ery [59,60]. Cognitive deficits and damage in long-
term potentiation were shown in M1 muscarinic 
receptor-knockout mice, indicating that this receptor 
is physiologically related to multiple roles such as 
neuronal excitability, synaptic plasticity, and differ-
entiation of neurons during early development, and 
memory [3,41,65,83,84,94,96]. Because M1 musca-
rinic receptor plays a critical role in memory and is 
closely linked with AD, it has long been guessed as 
a target for therapy [28].

Previous studies reported the precognitive effects 
of M1 muscarinic receptor activators and have used 
models in which the cholinergic function is damaged 
with scopolamine, a non-selective muscarinic recep-
tor antagonist [78]. Scopolamine is well known for 
interfering with the methods of learning acquisition, 
memory performance and short-term memory in 
animals and humans [32,47,63]. The post-training 
scopolamine dose-dependently decreased the step-
through latency in the inhibitory avoidance task; it 
shows scopolamine-induced amnesia [42]. Also, sco-
polamine reduced dose-dependently the number of 
M1 muscarinic receptor-immunoreactive (ir) neurons 
in the male rats’ hippocampus [44]. Moreover, sco-
polamine directly caused damage to the hippocam-
pal circuits that might predominantly be responsible 
for cognitive and memory deficits [18]. The chronic 
systemic treatment with scopolamine significantly 
disrupted cell proliferation, differentiation and mat-
uration, especially, impaired the dendrite matura-
tion and complexity of neuronal progenitor cells in 
the mouse hippocampal dentate gyrus (DG) [100]. 
A common way for a large number of degenerative 
routes in AD is the neuronal loss [87,93] and may be 
prompted by some factors, such as perturbed cal-
cium regulation, inflammatory routes or oxidative 
stress, ischemia, amyloid-β plaques and glutamate 

[8,19,72]. Additionally, most researches have con-
centrated broadly on amyloid-β deposits and neu-
rofibrillary pathology in AD, while neuronal loss has 
been more difficult to assess [86]. In the AD hippo-
campus, the neuronal loss can describe the mem-
ory disorders which are clinical signs, even in the 
preclinical stages [53]. The loss of neurons is com-
monly prominent in the hippocampus, mainly the 
CA1 region, and is further noticed throughout the 
cerebral cortex, increasing with disease progression 
[15]. Also, in both AD and normal aging, the distribu-
tion of the neuronal loss in the hippocampus is not 
very well understood [97]. This selective loss of neu-
rons could locally be related to understanding the 
complicated mechanism of AD [73]. Also, a neuronal 
loss in the hippocampus in microvascular dementia 
patients was described in 2002 by Kril et al. [55]. 
This could have essential suggestions in the design 
of therapeutic and investigative strategies in AD 
[73]. Drugs currently used for AD only controlled the 
symptoms and slow the progression of the cognitive 
decline. There is no effective treatment to delay or 
stop the progressive brain damage [22].

Numerous studies have documented increased 
oxidative stress in the plasma and cerebro-spinal 
fluid of AD patients, which can be observed as an 
increase in lipid peroxidation [9,80]. Therefore, anti-
oxidants, such as vitamin E, have frequently been 
discussed as a  potential therapeutic option in AD 
[5,58].

Health benefits of vitamin E include antioxidant, 
neuroprotective, and anti-inflammatory proper-
ties  [70]. Vitamin E can reduce or prevent memory 
deficiencies that accompany several disorders for 
example mental stress [67], ischemic injury of cere-
brum [1], AD [50,79], stroke [88] and aging [48]. The 
effect of vitamin E supplements on memory dam-
age has been studied in aged rats, it caused marked 
retention of their memory function [90]. Moreover, 
when vitamin E was given to moderately severe AD 
patients, those patients showed delayed beginning 
of severe dementia [79]. It has been shown that 
long-term, high-dose vitamin E supplementation in 
the elderly significantly develops the cognitive func-
tion [34]. Although trials examining the efficacy of 
vitamin E supplementation in the AD treatment have 
yielded inconclusive results [25,61,76,79], a combi-
nation of α-tocopherol and inhibitors of angioten-
sin-converting-enzyme have been newly confirmed 
as effective in attenuating the cognitive decay in AD 
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patients [21]. Taken together, these findings and oth-
ers [17,54,69,82] determine a crucial role for vitamin E 
in preserving emotional responses, learning and 
memory. Importantly, vitamin E has been described 
to have more interaction with the cholinergic system 
in processes of memory retention [23].

Since vitamin E decreased scopolamine-induced 
damage on memory retention; it may act through 
activation of the cholinergic system on memory 
retention [23]. However, to the best of our knowl-
edge, there have been no reports on the density of 
M1 muscarinic neurons that contain receptors in 
the hippocampus after administration of vitamin E. 
Therefore, the present study examined the effect 
of chronic administration of vitamin E on scopol-
amine-induced AD-like impairment memory and the 
changes of M1 muscarinic receptor-ir neurons num-
ber in the male rat hippocampus.

Material and methods

Animals

Forty-two male adult Wistar rats (8 weeks old; 
200 ±20 g) were provided by the Pasteur Institute 
(Tehran, Iran). The animals were maintained in indi-
vidual cages with a 12 : 12 hour light and dark cycle 
(light beginning at 7:00 a.m.) and also they had free 
access to water and food. The temperature of the 
animal house was 22 ±3ºC. All experiments were 
performed during the light phase between 8:00 a.m. 
and 14:00 p.m. The Ethics Committee in Golestan 
University of Medical Sciences approved all proce-
dures described in the method. We tried to use the 
minimum number of rats and we tried to minimize 
the suffering of animals.

Inhibitory avoidance apparatus

The inhibitory avoidance task, step-through, con-
sisted of the same size (20 × 20 × 30 cm3) light and 
dark boxes. Between two boxes, a  guillotine door 
(7.9 cm2) could be lifted manually. The floor of the 
dark box was made by stainless steel bars with 1 cm 
intervals. An isolated stimulator produced sporadic 
electric shocks (50 Hz, 3 s, and 1.5 mA intensity) to 
the grid floor of the dark chamber.

Behavioral procedures

Our previous studies [62,81] explained passive 
avoidance memory as follows: for 1 h before the 

start of the tests, rats were allowed to habituate in 
the testing room. Then, one rat was placed in the 
light box; after 5 s, the guillotine door was opened. 
The animal can enter the dark chamber. The laten-
cy was recorded to entrance the dark compartment. 
After waiting more than 120 s to enter the dark box, 
this rat was excluded from the experiments.

When all four-paws of the animal entered the 
next compartment, the guillotine door was closed. 
This trial was repeated after 30 min. In the acquisi-
tion trial, when the animal entered the dark (shock) 
box, the door was closed. Immediately a foot shock 
(50 Hz, 1.5 mA and 3 s) was sent to the grid floor 
of the dark chamber. After this shock, the rat was 
removed from the Shuttle Box. Two minutes later, 
the test was repeated and if the rat did not enter the 
dark box during 120 s, positive acquisition of inhib-
itory avoidance response was recorded. The rat was 
backed to the cage, if it learned inhibitory avoidance 
response successfully. 

Each animal on the test day was gently placed in 
the light box for the retention trial and the latency 
time to enter the dark box was recorded and termed 
as step through latency. The retention trial was set 
a limit of 300s as cut-off time.

Experimental design

We distributed the rats randomly to the following 
groups (n = 7):
•	 Control group: had no any drugs and behavioral 

tests;
•	 Scopolamine-saline group: receiving scopolamine 

(Tocris, UK) with a single dose of 3 mg/kg (i.p.) for 
a day [45], and then an injection of 0.9% sterile 
saline (1 ml/kg, i.p.) for fourteen days, and with 
a behavioral test;

•	 Scopolamine-sesame oil group: receiving a single 
dose of scopolamine 3 mg/kg for a day and then 
receiving sesame oil (1 ml/kg, i.p.) for fourteen 
days, and with the behavioral test;

•	 Three scopolamine-vitamin E treated groups: 
receiving a  single dose of scopolamine 3 mg/kg 
for a day and then an injection of vitamin E (Darou 
Pakhsh Pharmaceutical Mfg Co., Iran) with dif-
ferent doses (25, 50, and 100 mg/kg/day, i.p.) 
[7,23,38] for fourteen days, and with the behav-
ioral test.

Scopolamine, a  muscarinic receptor antagonist, 
was dissolved in 0.9% sterile saline and vitamin E 
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was dissolved in sesame oil. Twenty four hours after 
the scopolamine injection and the last injection of 
drugs, the rats were tested for the retention trial in 
inhibitory avoidance apparatus.

Perfusion and sectioning

Twenty-four hours after the end of the behav-
ioral test, the rats were transcardially perfused with 
normal saline and then with 4% paraformaldehyde 
solution (Scharlau, Spain). The brains were removed 
and fixed in 4% paraformaldehyde for a week. After 
dehydration and clarification with xylene, the par-
affin blocks of brains were prepared. Coronal serial 
sections (6-µm thick) of the brain with an interval 
of 20 µm were processed for immunohistochemical 
and cresyl violet staining [66]. 

Immunohistochemical staining

The process of staining with the antibody against 
M1 muscarinic receptor was as follows [44]: 

1. Incubation of the brain slices at 37°C for 30 min-
utes. 

2. Deparaffinization and hydration of slices embed-
ded in xylene and a graded series of ethanol. 

3. Washing with distilled water. 
4. After incubation at 60°C for 5 minutes, the sec-

tions were covered with an epitope retrieval 
solution (IHC World, USA) at 90°C for 15 min-
utes. 

5. For cooling, they were endorsed for 20 minutes 
at room temperature. 

6. Washing with washing buffer (PBS/Tween 20 in 
0.1% Triton X-100). 

7. For 10 minutes at room temperature, the per-
oxidase blocking solution (IHC World, USA) was 
used.

8. For 30 minutes at room temperature, the slices 
were incubated with the avidin/biotin blocking 
solution (IHC World, USA) and rinsed with PBS. 

9. For 60 minutes at 37°C, sections were covered 
with the Anti-Muscarinic Acetylcholine Recep-
tor 1 Rabbit polyclonal antibody (1 : 200, Abcam 
Inc., USA) and then the washing buffer. 

10. After this step, slices must be incubated for 
60 minutes with immunoglobulin G (IgG) (Abcam 
Inc., USA) at 37°C and washed with the washing 
buffer.

11. Incubation with Streptavidin HRP protein 
(1 : 5000, Abcam Inc., USA) at room temperature 
for 30 minutes and the washing buffer. 

12. By using DAB (Dako, Denmark), the M1 musca-
rinic receptors were visualized. 

13. Finally, the brain slices were cover-slipped with 
entellan (Merck, Germany).

Cresyl violet staining

The brain slices were deparaffinized in xylene 
and hydrated with ethanol and washed with dis-
tilled water. Then, the sections were stained for 
5 min in 0.02% cresyl violet (Sigma, USA) solution 
and washed quickly in distilled water. Finally, the 
slices were cover-slipped with entellan [81].

Image processing and cell counting

Using a BX51light microscope (Olympus, Japan) 
and DP 72 digital camera (Olympus, Japan), imag-
es were taken. 40× magnification for hippocampal 
CA1 and CA3 areas (30 000 µm2) and 100× mag-
nifications for DG area (4800 µm2) in all sections 
were selected randomly. To count the number of M1 
muscarinic receptor-ir neurons in the hippocampus,  
OLYSIA Autobioreport software (Olympus, Japan) 
was used, the M1 muscarinic receptor-ir neurons 
were counted manually [43,46,49] and counting was 
performed blind to treatment.

Statistical analysis

All of our data were expressed as mean ± SD. 
SPSS v.16 (Armonk, NY, USA) was used for statis-
tical analysis. For normal distribution of data, the 
Shapiro-Wilk test was approved for the statistical 
evaluation. We analyzed the data with the one-way 
analysis of variance (ANOVA) followed by post-hoc 
LSD (least significance difference) test for over-all 
various comparisons between groups and p < 0.05 
was considered to be statistically significant.

Results

During the memory retention test, the latency to 
enter the dark box was reduced after scopolamine 
treatment compared to the training day, indicating 
memory impairment (Fig. 1). Vitamin E administra-
tion (25, 50, and 100 mg/kg/day) increased signifi-
cantly the step-through time of latency when com-
pared to the scopolamine-saline group (p < 0.01,  
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p < 0.001 and p < 0.001, respectively, Fig. 1), showing 
improved memory retention. There is a  significant 
difference in step-through latency time between the 
50 mg/kg/day dose of vitamin E compared to the 
25 mg/kg/day dose of vitamin E (p < 0.001, Fig. 1). 
These results reveal that vitamin E, only at an inter-
mediate dose (50 mg/kg/day), inhibited the harmful 
effects of scopolamine.

In Figure 2, coronal sections of the hippocam-
pus for CA1 area stained by immunohistochemistry 
anti-M1 muscarinic receptor was shown. 

Furthermore, Figure 3 shows the number of neu-
rons contained in the M1 muscarinic receptor-ir in 
the rat hippocampus. An injection of scopolamine 
caused the hippocampal M1 muscarinic receptor-ir 
neuron loss in the CA1, CA3 and dentate gyrus. 
Comparison of the mean number of M1 muscarinic 
receptor-ir neurons in control and scopolamine-sa-
line groups of rats revealed that scopolamine sig-
nificantly reduced the number of M1 muscarinic 
receptors in different areas of the hippocampus 
(p < 0.001, Figs. 3A and B). 

In the scopolamine-saline group, the mean num-
ber of neurons with the M1 muscarinic receptors in 
the CA1 area was 25.52 ±9.05, and in the CA3 area it 
was 20.30 ±5.54, respectively.

We found that vitamin E significantly raised the 
amount of M1 muscarinic receptor-ir neurons in all 
areas of the hippocampus compared to the scopol-
amine-saline group (Figs. 3A-C). According to our 
findings, a 50 mg/kg/day dose of vitamin E appears 
to attenuate the scopolamine-induced M1 musca-
rinic receptor-ir neuron loss in all areas of the hip-
pocampus (Figs. 3A-C). The higher mean number of 
M1 muscarinic receptor-ir neurons for the vitamin 
E-treated group with a dose of 50 mg/kg/day was 
38.12 ±14.54 in the CA1 area of the hippocampus 
(Fig. 3C).

Figure  4  shows a  representative cresyl violet- 
stained coronal section of the hippocampal CA1 
area. In the scopolamine-treated groups, CA1 and 
CA3 pyramidal neuron numbers (25.62 ±7.27, 24.60 
±8.36 respectively) were significantly decreased as 
compared to the control group (40.20 ±13.52, 31.82 
±7.79, respectively) (Figs. 5A, B, p < 0.001). Indeed, 
an intraperitoneal injection of scopolamine caused 
the hippocampal cell loss. 

Vitamin E treatment significantly increased the 
number of pyramidal neurons in the CA1 and CA3 
areas. Comparison of the mean number of neurons 

in vitamin E-treated groups revealed that vitamin E 
(50 mg/kg/day dose) has a significant neuroprotec-
tive effect on the scopolamine-induced neuron loss 
(Figs. 5A, B). The mean number of neurons in CA1 
and CA3 for the vitamin E-treated group (with a dose 
of 50 mg/kg/day) was 38.80 ±8.14 and 31.20 ±8.39, 
respectively.

The mean number of DG granular neurons (19.42 
±4.86) after scopolamine treatment was significant-
ly decreased (Fig. 5C, p < 0.001) as compared to 
the control group (36.15 ±12.01). The comparison 
between scopolamine-saline and vitamin E-treated 
groups revealed that vitamin E increases significantly 

Fig. 1. The time of latency (per second) to enter 
the dark box. The rats under different groups were 
administered with an equivalent volume of sco-
polamine (3 mg/kg, i.p.) for a day and then saline, 
sesame oil and vitamin E (25, 50 and 100 mg/kg/
day, i.p.) was given to all the groups for fourteen 
days. The step through latency time was 120 s for 
all the groups. Twenty four hours after the scopol-
amine injection (base line) and after the last injec-
tion of drugs, the rats were tested for the retention 
trial in the inhibitory avoidance apparatus. Data 
represent means ± SD from 7 rats (n = 7) in each 
group. **p < 0.01 and ***p < 0.001 differences from 
the Sco-Saline group, $$$p < 0.001 difference from 
the Sco-Vit E (50 mg/kg/day) treated group.
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 CA1 CA3 DG

Control

Scopolamine-Saline

Scopolamine-Sesame oil

Scopolamine-Vitamin E 25 mg/kg/day

Scopolamine-Vitamin E 50 mg/kg/day

Scopolamine-Vitamin E 100 mg/kg/day

Fig. 2. Coronal sections of CA1, CA3 areas of the rat hippocampus and DG stained by immunohistochemistry against M1 
muscarinic receptor, from control, scopolamine-saline, scopolamine-sesame oil, scopolamine – 25 mg/kg/day vitamin E, 
scopolamine – 50 mg/kg/day vitamin E, scopolamine – 100 mg/kg/day vitamin E groups. Scale bars = 20 µm. Arrows 
demarcate M1 muscarinic receptor-immunoreactive neuron in the hippocampal CA1, CA3 and DG areas of all groups.
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Fig. 3. The M1 muscarinic receptor-ir neuron num-
bers in the hippocampal CA1, CA3 and DG areas. Data 
represent means ± SD. ##p < 0.01 and ###p < 0.001 
differences from the control group, **p < 0.01 and  
***p < 0.001 differences from the Sco-Saline group, 
$p < 0.05 and $$p < 0.01 differences from the Sco-Vit E 
(50 mg/kg/day) treated group.
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 CA1 CA3 DG

Control

Scopolamine-Saline

Scopolamine-Sesame oil

Scopolamine-Vitamin E 25 mg/kg/day

Scopolamine-Vitamin E 50 mg/kg/day

Scopolamine-Vitamin E 100 mg/kg/day

Fig. 4. Neurons in the CA1, CA3 and DG areas of the hippocampus stained by cresyl violet (neurons are pur-
ple) from the control, scopolamine-saline, scopolamine-sesame oil, scopolamine – 25 mg/kg/day vitamin E, 
scopolamine – 50 mg/kg/day vitamin E, scopolamine – 100 mg/kg/day vitamin E groups. Scale bars = 20 µm.
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the scopolamine-induced neuron reduction (Fig. 5C, 
p < 0.001). The most effective dose of vitamin E was 
50 mg/kg/day and it protects hippocampal DG gran-
ular neurons against scopolamine. The mean num-
ber of granular neurons for the vitamin E-treated 
group with a dose of 50 mg/kg/day was 34.15 ±9.42 
neurons.

Discussion

The present study suggested that vitamin E could 
increase M1 muscarinic receptor-ir neuron density 
in the hippocampus of scopolamine-treated rats. 
Also, vitamin E treatment could improve the scopol-
amine-induced neuronal loss and memory impair-
ment. Vitamin E seems to have a significant neuro-
protective effect on scopolamine.

In this study, we found that a single dose of sco-
polamine, as an antagonist of muscarinic receptors, 
could impair passive avoidance memory. Similarly, 
several lines of evidence have shown that scopol-
amine can cause a very potent impairment on tests 
of memory [20,37,40]. Moreover, an intrahippocam-
pal [6] or intra-peritoneal [56,81] injection of scopol-
amine impairs the passive avoidance memory. Some 
previous studies indicate that both subtypes, M1 
and M2, of muscarinic receptors were important for 
memory association of inhibitory avoidance [77].

In the present study, vitamin E treatment sig-
nificantly improves the passive avoidance memory. 
Consistently with our findings, some studies demon-
strated that vitamin E potentiated memory retention 
[23,38,51]. Also vitamin E has been reported to avoid 
the aging-induced memory deficits [29,90]. It has 
been reported that vitamin E with activation of the 
cholinergic system could help the memory mainte-
nance [23].

According to our findings, our previous research 
confirms that a  scopolamine injection causes cell 
loss in hippocampal neurons [81]. Also, another 
study has reported a significant loss of hippocampal 
neurons especially in both CA1 and CA3 areas in AD 
[73]. Besides, previous studies have shown that neu-
ronal loss has occurred in many mouse models of AD 
[10,12,39,99] and AD patients [98].

Also, we found that vitamin E can increase hip-
pocampal pyramidal and granular neuron numbers 
after the scopolamine injection. Vitamin E can cause 
delay or inhibit a  clinical diagnosis of AD in elder-
ly people with mild cognitive impairment [35]. Also, 

Nishida et al. indicated that chronic lipid peroxida-
tion due to vitamin E depletion enhances the AD 
phenotype in a mouse model [71]. Moreover, mem-
ory weakening was slowed in moderately severe 
AD patients when they took vitamin E supplements 
[2]. Furthermore, it has been shown that long-term 
high dose vitamin E supplementation in the elderly 
patients significantly increases the cognitive func-
tion [34]. 

Consistently with earlier findings [44], our results 
revealed that treatment of Wistar rats with scopol-
amine led to decrease M1 muscarinic receptor-ir 
neuron numbers in the hippocampus. Similarly, after 
an injection of scopolamine to dogs, the older dogs 
showed a significant decrease in the density of the 
muscarinic receptor in some areas of cortex [4]. Sim-
ilarly to our study, Araujo et al. found a decrease in 
muscarinic neurons. Furthermore, the M1 immuno-
reactivity was markedly decreased in AD brains [85] 
and also an age-related decrease in the M1 recep-
tor has been reported [91]. Some other researches 
confirm a scopolamine injection, severe cell losses in 
hippocampal cholinergic neurons [44,57].

The present study showed that vitamin E treat-
ment increases the hippocampal M1 muscarinic 
receptor-ir neuron numbers in scopolamine-treat-
ed rats. Recent studies have shown many useful 
health effects of vitamin E such as antioxidant and 
anti-inflammatory properties [52]. Many studies 
reported that vitamin E can act as an antioxidant 
in opposition to oxidative factors [74,75,89]. Some 
studies have revealed that vitamin E can decrease 
the levels of brain lipid peroxidation and protects it 
against neuronal damage [11,64,92]. Similarly, we 
have found that vitamin E compensates the reduc-
tion of M1 muscarinic receptor-ir neuron numbers 
in scopolamine-treated rats. Nevertheless, there are 
a few studies along the mechanisms to describe the 
effects of vitamin E. Moreover, vitamin E could have 
different roles distant from being an antioxidant in 
cellular mechanisms [24].

The role of vitamin E in protection against AD 
pathology has also described [31]. Experiments  
in vitro and in vivo confirmed a mechanism of vita-
min E protection against the formation of the hyper-
phosphorylated tau. In this case, vitamin E was able 
to inhibit the activation of p 38 mitogen-activated 
protein kinases, whose activity is critical for the 
phosphorylation of neuronal tau molecules [31]. 
Therefore, further research is required to verify the 
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evidence that vitamin E as a nutritional compound 
can endorse healthy brain ageing and helps to delay 
the AD-related functional decline [26].

Antioxidative effects of vitamin E, under certain 
conditions, may also be useful in the brain. Howev-
er, beside these helpful roles, vitamin E potentially 
can increase amyloid-β. α-tocopherol which differs 
among vitamin E types, has the weakest amyloi-
dogenic potency. So, further researches are sug-
gested to explain the potential role of these various 
vitamin E species with respect to AD and to detect 
which form has antioxidative properties without 
having an amyloidogenic potential [33].

In conclusion, our results reveal that vitamin E 
can compensate the neuronal loss and it can increase 
the number of M1 muscarinic receptor-ir neurons in 
the hippocampus after exposure to scopolamine. 
Therefore, vitamin E may have a therapeutic signifi-
cance for AD.
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